Researching Health Information Behaviors:
Landscape, Al's Role and Its Impact

Choi, Wonchan University of Wisconsin-Milwaukee, USA | wchoi@uwm.edu
Yu, Xinchen University of Arizona, USA | xinchenyu@arizona.edu
Zhang, Yan University of Texas at Austin, USA | yanz@utexas.edu
Chen, Annie T. University of Washington, USA | atchen@uw.edu




Outline

Wonchan: Generative Al Literacy Framework

Xinchen: Large-scale Behavioral Annotation in HIB

Yan: Users’ Experience with Al-enabled Chatbots

Annie: Al Information Interactions among Chinese Older Adults

Discussions



REITY OF WISCOMSIN

MILWAUKEE

Generative Al Literacy Framework

Wonchan Choi

Associate Professor

University of Wisconsin-Milwaukee
School of Information Studies



UHIVERSITY OF WISCOMEIN

MILWAUKEE

GenAl in Higher Ed

e Wide adoption — 85% of U.S.
students reported using GenAl for

coursework (Inside Higher Ed, 2025).

e GenAl failures (Boriji, 2023)
o Factual errors
o Bias
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Inside Higher Ed. (2025). How Al Is Changing—Not ‘Killing'—College.
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Support Expected

@ Offer training on how to use Al tools professionally and ethically
Provide clearer institutional guidance on ethical use vs. misuse of Al tools
@ Create space for open discussion about Al’s risks and potential
@ Include Al skills in relevant majors and career preparation pathways

@ Require a course or module on Al literacy (e.g., what Al is, how it works, ethical use)
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Project: Developing a GenAl Literacy Framework and a
Tool Kit for Higher Education
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GenAl policies,

library guides, &
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Interviews and survey
with students

Interviews with
librarians, faculty, &
administrators

PD workshops with
librarians and
students
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lceberg Model of Competency (Spencer & Spencer, 1993)

Knowledge

MccClelland's JE
Competency

Model

Social Role

Self Image

Traits

Motives

Experianta. (n.d.). McClelland’s theory of competencies at work (the competency model).



https://experianta.com/directory/concepts/mcclellands-theory-of-competencies-at-work-the-competency-model/
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GenAl Competency Components

Easier to observe and improve

Harder to observe and improve

Knowledge (K)

Skills (S)

Self-Concept (A)

The information and understanding
an individual has acquired, which is
necessary for performing tasks
effectively

The ability to perform specific
physical and cognitive tasks with
proficiency

An individual’s values, attitudes,
or perception of themselves (i.e.,
self-image) that influence how they
respond or react to a given
situation or problem
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Bloom's Taxonomy (Krathwohl, 2002)

HIGHER-ORDER

LOWER-ORDER
THINKING SKILLS

THINKING SKILLS >

A CREATING

Use information to create something new

_EVALUATING

Examine information and make judgments

ANALYZING

Take apart the known and identify relationships

APPLYING

Use information in a new (but similar) situation

UNDERSTANDING

Grasp meaning of instructional materials

REMEMBERING

Recallspecific facts

University of Florida Information Technology. (n.d.). Bloom’s Taxonomy - Cognitive domain.
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GenAl Competency Development Processes

Lower order

Higher order

1. Understand

2. Apply

3. Analyze & Evaluate

4. Create

Develop both conceptual
and technical
understanding of GenAl
and how these systems
work, including their
capabilities and inherent
limitations

Use GenAl tools
purposefully, effectively,
and contextually
appropriately across
academic tasks

Assess GenAl tools
regarding their technical
and broader societal,
ethical, and legal

implications, such as bias,

accountability, autonomy,
privacy, and intellectual
property

Adapt or customize GenAl
tools to meet specific
needs but also propose
novel applications or
theoretical insights
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GenAl Literacy Framework (Work-in-Progress)

recognize GenAl systems

Progression Competency Knowledge| Skills | Attitudes
4.2 ldeate and theorize novel applications of GenAl
4. Create :
4.1 Customize or develop GenAl tools
3.3 Justify or critique the use of GenAl tools
3. Analyze & | 3.2 Evaluate the societal, ethical, and legal implications of X
Evaluate using GenAl tools
3.1 Assess the appropriateness of GenAl models and tools X
2 Al 2.2 Document and acknowledge the use of GenAl
- APPY 2.1 Apply task-appropriate GenAl tools X X X
1.3 Understand the current and future capabilities and
T X X X
limitations of GenAl
1. Understand | 1.2 Understand the technical foundations of GenAl X X X
1.1 Develop a conceptual understanding of GenAl and X X X
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GenAl Literacy Framework (Work-in-Progress)

K: Understands the limitations of Al algorithms and its
cultural biases based on training data

S: Experiments with GenAl tools for information retrieval
methods

A: Demonstrates appropriate skepticism about how

misaligned Al outputs can constrain, rather than enhance,
users’ creativity

1.3 Understand the current and future capabilities and
o X X X
limitations of GenAl

1. Understand
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GenAl Literacy Framework (Work-in-Progress)

K: Knows major types of GenAl tools and their common
features and constraints (e.g., LLMs, image generators)

S: Develops prompts to get desired results (e.g., cross-
cultural images using DALLE)

A: Recognizes the value of using GenAl strategically by
employing iterative prompt-building techniques to improve
alignment and output quality

2. Apply

2.1 Apply task-appropriate GenAl tools x| x| X



Future Directions

Complete SLR and policy analysis.

Collect data from students and other stakeholders in higher education.
Refine the framework.

Develop a toolkit.



UNIVEREITY OF WISCOMSIN
MILWAUKEE

Thanks to My Team Members

Yan Zhang, Professor, iSchool @ UT-Austin

Besiki Stvilia, Professor, iSchool @ FSU

Hyerin Bak, Teaching Faculty, iSchool @ UWM
Emmanuel Onaivi, PhD student, iSchool @ UWM
Opeyemi Rachael Oboh, PhD student, iSchool @ UWM
Joyce Lee, Master student (MLIS), iSchool @ UWM



A

ARIZONA

_arge-scale Behavioral Annotation in Health

nformation Research: From Traditional Methods to
_LM-Human Collaboration

Xinchen Yu, Ph.D.
Assistant Professor of Practice

Department of Computer Science
University of Arizona



A

ARIZONA

Background

You

7

Genetics d‘? Payers / Claims

X

e
Clinical Trials ‘{:& Pharmacies

Sources of Your

@ Health Data Remote or Face

@ to Face Clinician
¢ Encounters

Senior Homes p

i

2

Qv

Health Agencies % %‘ Labs

COC Nir

Hospitals @ [@ Devices




A

ARIZONA

Background

You
>
Genetics /@J QLD Payers / Claims
Ny
Clinical Trials % Pharmacies
o
Sources of Your
Health Data == Remote or Face
Senior Homes Pé@? to Face Clinician
i ~%  Encounters
Health Agencies % f ¥ Labs

Hospitals @- @ Devices

Source: Online health forums (Reddit
r/depression)

Behaviors: seeking advice,
information, validation, emotional
support, providing support...
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Source: primary care appointments,
specialist consultations

Behaviors: asking treatment,
expressing preferences, negotiating,
disclosing barriers to treatment...
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Source: health chatbots

Behaviors: asking questions,
describing symptoms, disclosing
concerns, diagnosis, requesting
referrals to human providers...
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Motivation

e Design effective peer support:
o Peerresponses types — positive outcomes?
e Improve patient-provider communication:
o Communication style — degree to which patients
disclose treatment barriers?
e Map trust boundaries:
o Questions types — ask referral for human provider?

Manual annotation can’t scale.
We need scalable behavioral annotation.

Source: Online health forums (Reddit
r/depression)

Behaviors: seeking advice,
information, validation, emotional
support, providing support...

Source: primary care appointments,
specialist consultations

Behaviors: asking treatment,
expressing preferences, negotiating,
disclosing barriers to treatment...

Source: health chatbots

Behaviors: asking questions,
describing symptoms, disclosing
concerns, diagnosis, requesting
referrals to human providers...
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A general pipeline

“ Training Set Model Inference

Data _
evaluation

%

Testing Set

Input 1: "I'm so sorry you're struggling.
You're not alone in this. Sending hugs."
Label: Emotional support

Input 2: "CBT really helped me. Ask your
doctor for a therapist referral.”
Label: Informational support
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Case study: Pinpointing recovery stages in opiate use
1. Data Collection 2. Identifying Stages and Support
€ reddit ot I — e
'U' DL Modils :g:;;TMTsnmﬂmv
Ir-“_m----l E:EE:I. - EG Emaotional support? Types? '
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Case study: Pinpointing recovery stages in opiate use

RQ1: Do posts at different recovery
stages use the same language?

1. Data Collection

reddit
Dreddit (o)

2. Identifying Stages and Support

3. Understanding Stages

}
| Linguistic Featuras |

| Comparing posts across siages |[Rm:
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Case study: Pinpointing recovery stages in opiate use

RQ2: How does the type of social
support received in response to
posts vary across different stages
of recovery?

1. Data Collection

3. Understanding Stages

}
Linguistic Featuras |

| Comparing posts across siages |mm:

2. Identifying Stages and Support
EG Recovery siaga’? .
[_comment | DL Modeds ;lemmmﬂrms? i
{_comment | ') Emotional support? Types? |
(comment ] T
4. Comparing Support across Stages
() e iomasonal mgpar |
advicn wbertal  opincn
perscnal axpanence Rt
I Companing comments
________ # Emotonad sapport S
[_comment | e | [ROZ)
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Case study: Pinpointing recovery stages in opiate use

RQ3: How are social support
comments on a post associated
with recovery stage transitions?

1. Data Collection 2. Identifying Stages and Support
Oreddit | ————
AeP— [_post ] e s
[l s 4 i e e e s it [ comment | DL Models © Informational support? Types?
( posts ] ([ comment | {O Emotional suppart? Types?
_comments (comment ) ST
3. Understanding Stages 4. Comparing Support across Stages

......................

(= ] ok et opmn |

4 ! perscnal expenence fact
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Case study: Pinpointing recovery stages in opiate use

2. Identifying Stages and Support

1. Data Collection

..............................

3. Understanding Stages

RQ3: How are social support |
| Linguistic Features I

comments on a post associated -
with recovery stage transitions? | Comparing posts across siages | (RQH)

v @&
Time >
T on: (] Y proge
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Language differences between different recovery stages

lvs2 1vs3 1lwvsd 2vs3d 2vsd 3vsd

Tokens 1t 1T ™t (RN}

2nd person pronouns 11 W HH Wl Wl Hl

Joyful words LT Tt H H W H

Positive words 4l | LI W Hi Wl

Negative words ™M1t Tt Tt ™ 1 71

Trustful words (NN IR W Wi 1

Dominant words L1 L1 AR RN Hi H

Painful words Tt T

Needful words N T 1 Tt ™

Anxious words 1Ll 11 111 ) )

Fearful words ™t ™t ™t ?e:g(;gg :tages:
Hopeful words — H«l« H 4 2: initial recovery
Hostile words N N T 3: sustained recovery
Passive words 1t 1T ™ T 4: stable recovery
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Differences in informational support

ﬁ
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Recovery stages:

1: addiction

2: initial recovery

3: sustained recovery
4. stable recovery
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Differences in social support across stage transitions

0.7
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W Regression
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Informational Social Support
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I :
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Advice Referral Experience Opinion
0.3 0.02 0.5 0.43
0.29 0.01 0.57 0.48 0.41
0.31 0.01 0.61 0.49 0.44
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Human-Al collaboration for annotation

e 9 costly

@ subhuman-level performance

- Xe

Training Set Model Inference

Data Source .
evaluation

%

Testing Set




A

ARIZONA

Key takeaways

e Language: Individuals in early recovery use significantly more negative,
painful, and passive language than those in later stages.

e Support received in early recovery: Early-stage individuals receive
significantly more informational support (facts) but less emotional support.

e Support and recovery progression: Users who move forward in their
recovery receive more informational support (facts and advice) compared to
those whose stage remains unchanged.
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Co-Annotating

Economical Subhuman-Level Performance

] Original Dataset - LLM Annotation for All Data 70

- Manual Annotation for All Data @ 90

Annotating Pipelin
Co ang ripsine Costly Human-Level Performance
ndom sampling 1. Expertise Estimation 2. Work Allocation 3. Allocation -t
/" PiotDataset Uncertainty /" pilot Dataset sorted Analysis
Computation by Entropy (asc.) . @ @
IE o1 0sx¥%6s1
@ =) Entropy = 0.99 ‘ - V‘f '
=59 v — % (O] i
Promig | Entropy Text5000m |
En =0 —
tMn — Around x1% can be — ]
mm"‘ —~| outsourced to [} = —
& achieve human level
mm) Entropy =0.76 - | 106 @ performance. 4. Apply Step 182
. A on Original Dataset

Li, M., Shi, T, Ziems, C., Kan, M. Y., Chen, N., Liu, Z., & Yang, D. (2023, December). Coannotating: Uncertainty -guided work allocation between human and large language models for data
annotation. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (pp. 1487-1505).
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“Not everything is helpful, but it's

definitely better than dealing with
hings alone”

N

xperience with }nabled Chatbots on Mental Health Apps

f Information, The University of Téiﬁxustin
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TEXA.S WHAT STARTS HERE CHANGES THE WORLD
[ Fem——————

Mental health crisis and Al-enabled chatbots

* In 2022, 23.1% of adults aged
18 or older (estimated 59.3

million) lived with a mental Generative A.l.

i”neSS (Substance Abuse and Mental Health teCh nO|Og |eS “hOId
Services Administration, 2022). |:> Significant promise,, for

» Lack of therapeutic resources, addressing mental health
stigmatization. CriSes (vet, 2025).

» Preference for self-reliance,
difficulty identifying or
expressing concerns, financial
resources.
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AreA.lL Therapy
Chatbots Safe to Use?

Psychologists and technologists see them as the future of therapy.
The Food and Drug Administration is exploring whether to
regulate them as medical devices.
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“No, not all psychologists or mental health providers
believe Al or chatbots are the future of

therapy. Therapy is so much more than about words
and vocabulary. When | see—literally see- a client, |
am evaluating their physical demeanor, actions, tone
of voice, dress, hygiene, timeliness, affect, speech
patterns, and all the other real life nuances that are
essential to accurate clinical assessment.”

 lllinois and Nevada banned the use of therapy
chatbots from providing mental health therapy in
2025 because the technologies were not licensed
like human therapists (Health Policy Institute of Ohio, 2025).

 How well therapy chatbots work is unclear.

39
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Research questions

 Why do users use chatbots on mental health apps?

 What is users’ experience with chatbots on popular mental health
apps?

* What are the effects of the use?

40
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Methods

« User review analysis
— Apps selected: Yana, Wasa, Clarity.

— Selected 60 user reviews for each app, 30 from the
Apple App Store and 30 from the Google Play Store.

— The 30 reviews had an equal number of ratings 1, 2,
3,4, and 5.

— Analyzed using the qualitative content analysis
method, facilitated by MaxQDA.

41
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Chatbots’ affordances fill a gap in people’s MH
help-seeking

Chatbots’ non-human nature
— Shy personality: “/ am an introvert.” “| have anxiety when talking to people”

— Lack of ability to articulate feelings: “/ struggle with talking to people about what | am
feeling”

— Afraid of being judged: “/ can talk to Yana about anything without being judged.”

— Privacy concerns: “/ am concerned about my privacy, which is why | chose Al to start
therapy.”

Chatbots’ human-like conversing abilities

— Lack of social support: “/ do not have many friends or others to talk to about how |
feel, and | don’t have many people whom | trust or are open to listen.”

Easy access
— 247
— Fast access

Affordability

— Some users are not able to pay due to their financial situation. 43
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User-chatbot interactions
User ChatbOt

@® Dump information ]
Information support

|

) *  Providing information sources
Summarizing how | am doing
Appraising support
« Analyzing emotions, thoughts, feelings

*  Providing coping instructions, guides,
suggestions, and advice

Emotional support

*  Providing emotional support and
encouragement

Companionship
Checking on you

e

44



WHAT STARTS HERE CHANGES THE WORLD

Response-level user experience

e Accurate, unbiased * Lack specificity
e Helpful, highly informative, * Incoherent, irrelevant
thoughtful * Repetitive
* Positive, supportive, encouraging  Some messages are too generic and
* Not super generic, not repetitive short (e.g., “Okay”)
* Not empathetic, potentially
dangerous

45
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Conversation-level user experience

Realistic, fluent, deep, real, and loyal Not like talking to a real, normal person
e “wildly realistic, fluent, deep,” users * Lacks conversational skills; mechanical,
forgot they were talking to an Al “like click options given to you, not like
e “agreat conversational partner, like we conversation”; talk in circles; not
are talking to a real human, feels like a natural; forced
real and loyal friend.” e Cannot hold a long conversation; poor
e “atherapist who is free.” at following and keeping conversations
going

e Not able to resume an old conversation

46



TEXA.S WHAT STARTS HERE CHANGES THE WORLD

The Unbepruiny of Texss & Austin

The effects of use

Positive Negative

Emotional effects Emotional effects

 Make users feel less alone: “Yana helped
me with missing my daughter as she Makes users feel worse, leads

travels”. _ to frustration.
« Make users feel heard and relieved: “It

feels like a weight has been lited of my ~ * Sometimes it can make you

All Sh:tlﬂlzdgerssc;::'al consequences of feel a bit MWhen you

eviati i u - ) :

sharing MH challenges realise you re tqlklpg ’[.O ,

- “Avoid the regret of who you shared it something that isn't alive.
with. - User feels “guilty for the

Enhancing self-understanding ) .
«  “It helped me understand myself better.” energy it takes every time you

run a generative Al prompt.”
47
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Discussion

« Al chatbots are not for everyone, but they fill a gap in meeting users’
need for mental health help-seeking, as users demand around-the-
clock support that therapists cannot provide, and they are affordable.

* The negative experiences revealed are mostly about response and
conversation quality. With the enhancement of conversation quality,
more people may adopt the technology.

* In the future, we should conduct interview studies to more

comprehensively understand human-Al chatbot interactions for mental
health help-seeking.

48



Thank you to my student collaborators:
- Wan Ting Wang
- Abigail Stark

49



Considering Al Information

Interactions among Chinese
Older Adults

Annie T. Chen, MSIS, PhD
Associate Professor
University of Washington School of Medicine
Department of Biomedical Informatics and Medical
Education



Agenda

- Background

« Introduction and Research Objectives
« OurWork Up to This Point
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Background

« Al technology is increasingly becoming a part of everyday life

« Current research about Al interactions is centered primarily around
younger generations, and less is known about how older adults can use Al
safely
Language barriers can limit access to Al technologies

« Gathering input from older adults with limited English proficiency can help

us improve instructions, design clearer tools, and support digital
independence

OhS, Kim K, Kim M, Oh J, Chu S, Choi ). Measurement of Digital Literacy Among Older Adults: Systematic Review. | Med Interne t Res 2021;23(2):e26145.

https://www.jmir.org/2021/2/e26145. DOI: 10.2196/26145




Affordances and Challenges of Al in Healthcare

* Al can support healthcare through a variety of
different tasks, such as interpreting radiology images

* Al can facilitate a transition from reactive to proactive
approach to health, focusing on health management
instead of disease treatment, which could mean
fewer hospitalizations and early diagnosis

* However, many challenges with Al still exist, including
privacy and information safety
* Understanding how users conceptualize of and

. . s ; : Al can assist radiologists when reading MRIs.
interact with Al can be critical to effective design Eurapean Science-Media Hub, 2021

Adam Bohr, Kaveh Memarzadeh, Chapter 2 - The rise of artificial intelligence in healthcare applications, Artificial Intelligence in Healthcare, Academic Press, 2020, Pages 25-
60, https://doi.org/10.1016/B978-0-12-818438-7.00002-2.

lliashenko, O. Bikkulova, Z., Dubgorn, A. Opportunities and challenges of artificial intelligence in healthcare. E3S Web Conf. 110 02028 (2019). DOI:
10.1051/e3sconf/201911002028




Why is Al Literacy Important?

« Technology is evolving at an explosive pace, and is now seamlessly integrated
into many aspects of daily life (e.g., digital payments, virtual meetings)

« Al affords opportunities to enhance independent living and well-being for older
adults

« Learning basic digital skills can help people stay safe online and prevent
cognitive decline

« Understanding about how Al works can make daily life easier, reduce frustration,
and help people feel more confident and connected

Kaur A, Chen W. Exploring Al Literacy Among Older Adults. Stud Health Technol Inform. 2023 Aug 23;306:9-16. doi: 10.3233/SHTI230589.

Kanglie, E. et. al,. Al Literacy Education for Older Adults: Motivations, Challenges, and Preferences. arXiV, Human-Computer Interaction. 2025 Apr 20.
doi.org/10.48550/arXiv.2504.14649




Introduction and Research Objectives

« QOur objective is to assist Chinese older adults with limited English
proficiency to use Al more effectively

-  We would like to understand what kinds of support would help
make these tools more useful, and to improve Al education
programs



Our Work Up to This Point

We have been taking a community-
engaged approach

Through informal communications
with community leaders, we came
to understand that instruction on Al
was desired

We conducted an Al tutorial in May
of 2025

Created using ChatGPT 4.0

¥
)



Tutorial Description

* Focus: Basic introduction to ChatGPT The tutorial covered:
« Concept: Experiential learning and « Creation of a ChatGPT account
discussion +  Changing the settings (e.g., font size) -
we employed screenshots with clear
«  Location: community center visual cues to walk participants through

setting up their systems step-by-step

» Exercises with ChatGPT (planning a trip,
explaining medical terms, explaining
how to apply for Medicare, etc.)

« Strategies for prompt engineering

* Duration: 75 minutes
* Language: Mandarin Chinese
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What's on the agenda today?

(Directing tutorial participants to the prompt window)
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= This slide invites participants to
PRl RR it AR 45 B P consider the quality of the

answer that ChatGPT gave and
how they might revise it to
«  ChatGPT ERREBEMBERETHEREERSE improve the quality of the
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Tips and tricks:

-Use clear and concise prompts
-Be concrete and precise (if
something specific is needed, be

Fi% I RE /48 T BB ER

1. REEZAHE sure to specify)
o R, MENBTREER, “Try diferent tings

o fil . THBEFEBEEREHNTFE, |
2. BEERHE

o AFERERABIENX, FEERNA,

o il . THEZRHEERT AR BNRRERRS, |
3. TEHEHTRAAE

o BE—REETME, MEAERSMHITHET,

{8/ T ChatGPT 4.084i&
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Key Takeaways

Overall reception:

Participants were enthusiastic and engaged during the session
The conversation was very organic, and the participants demonstrated varying degrees of
proficiency with technology and awareness of potential issues with Al

Considerations for technology and multilingual support:

Many people brought devices, including both computers and tablets
There was need for substantial 1:1 assistance to get everyone set up (it was helpful to have multiple

research team members there)
There was a need for clearer communication about the language that the tutorial was given in

We had an activity at the end for people to contribute questions to a collaborative document; this did
not receive much attention

Broader reach:

There was substantial interest in the tutorial, with strong attendance and interest from another
community organization afterwards
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Next Steps: An Interview Study

* We plan to interview Chinese older adults to better characterize their
health information behavior and patterns of interaction with Al, to inform
the design of Al literacy programs and Al tools for older adults

« Eligibility criteria: 55 years and older, with their primary language being
Chinese
* Duration: 60 minutes
« Participants can choose to be interviewed in-person (at a location
convenient to them) or online
> Online: We will help with Zoom and ChatGPT setup
> |n-person: Participants can bring your own computer, or we will
provide one for the ChatGPT activity



Interview Sections

The interview will have two parts:

« Part 1: Participants' impressions of Al and how
they find health information. [20 minutes]

« Part 2: Interactive ChatGPT activity. Participants
will have the opportunity to work through different
healthcare scenarios to explore how ChatGPT can
help with information and communication needs.
[40 minutes]

4 y N a
Adobe Stock

We are administering various instruments prior to the
interview (e.g., demographics, health history, Al literacy).



Seeking to Offer Benefits to Participants

By participating, participants will have a chance
to learn about:

+ Use ChatGPT to assist with obtaining, M
interpreting, and communicating
information about health @D searcn

A

« Use Zoom for collaborative communications
(if they choose to be interviewed online)

- How to consider the strengths and
limitations of Al tools



Concluding Thoughts on Al and Health Information
Behavior

« | presented a case study of how we are partnering with communities to
better understand Chinese older adults’ potential use of Al tools for health-
related purposes

« Al could potentially help us to improve our health management, but
guestions remain about how older adults may use Al to address health-
related problems, and how to design to facilitate health-related interactions

« Considerations for the role of Al and health literacy

Al + health literacy

Infor-
mation
Behav
-ior
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Diccucciong

Al. What research methods

and data sources are you
currently using in HIB B1. Where have you seen Al make the

biggest impact in HIB research, or where do
you wish it could?

research?

A2. What's the biggest
challenge you face in
collecting or analyzing health

behavior data today? B3. Which Al application excites you most
for HIB research?

B2. Has anyone tried using Al tools in your
research? What worked or didn't work?

D1. Whose voices matter most when we

C1. How do you see the
risks that Al amplifies
existing health disparities or
biases in our research?

C2. What safeguards do you
think are most critical when
using Al with sensitive
health data?

design or interact with Al systems for HIB E1l. What's one thing
research? (Researchers, patients, clinicians, you'u try differently in

policymakers, or someone else?)

your research after

D2. What's one breakthrough you hope to today's panel?

see Al enable in HIB research?
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